
Brad Wilson Principal Software Developer Tier 3

No single point of failure

Developers can be productive while offline

Offline operations are extremely fast... almost everything is offline

No infrastructure required for skunk-works projects

Admin in whatever model suits you best:
benevolent dictator, Lieutenant, or multiple committers

Branching “just works”

Created by Linus Torvalds (~9 months)
Maintained by Junio Hamano

 Source control for Linux since v2.6 in April, 2005

Open source (http://github.com/git/git)

TFS Online, GitHub, CodePlex, Bitbucket,
and countless startups and enterprises

“Nothing else was good enough or fast enough.”

http://github.com/git/git

Easy and fast branching and merging

 Snapshots of your working folder, not diffs

Extremely fast with large repositories

Cryptographic tamper-proofing of history

Automatic support for renames

…it won in open source

c6afc95…

Author

Brad <email>

Committer

Brad <email>

Message

First Commit

Files

0ceb234…

Author

Jim

Committer

Jim

Message

Fixed typo

Files

9a7a35d…

Author

Scott

Committer

Matthew

Message

New feature

Files

git add puts copies of files (stages) into the “index”
 If you make further modifications to a file, you must re-stage it

git commit converts the index into a commit
 git commit -a does both ‘add’ (for mods/deletes) and ‘commit’

 Still need to use git add for new files

git status shows you what’s staged and unstaged

Use built-in diff to show you differences in files
 git diff shows you what you could stage

 git diff --staged shows you would you could commit

On branch master

Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

deleted: deleted.txt

modified: foo.txt

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

new-file.txt

no changes added to commit (use "git add" and/or "git commit -a")

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: deleted.txt

modified: foo.txt

new file: new-file.txt

diff --git a/foo.txt b/foo.txt
index 3c619de..65d9d4f 100644
--- a/foo.txt
+++ b/foo.txt
@@ -1,4 +1,4 @@
This is a new file.

+Inserted a line here
And a new edit.

-This line I'm planning to delete later.
Fixed!

Your working folder contains a copy of source code

The point in the repository you’re working from is called HEAD

You will typically have HEAD pointing at a branch (f.e., master)

Use git checkout to change what HEAD is pointing to
 Your working folder updates when you check out

 You may not be able to check out if you have conflicting pending changes

A branch in Git is a “sticky note” pointing at a commit

git checkout hash points HEAD at a commit
git checkout branch points HEAD at a branch

When you commit, HEAD always moves forward…
…and if HEAD is pointing at a branch, the sticky note moves, too

Creating a new branch is just making a new sticky point, pointed (by
default) to wherever HEAD is point to

Tags are sticky notes that don’t automatically move

1.0 master

c6afc95…

Author

Brad <email>

Committer

Brad <email>

Message

First Commit

0ceb234…

Author

Jim

Committer

Jim

Message

Fixed typo

FilesFiles

9a7a35d…

Author

Scott

Committer

Matthew

Message

New feature

Files

git commit –m "My first commit"

master

A

HEAD

git commit (x2)

master

A B C

HEAD

git branch bug123

A B C

bug123

master HEAD

git checkout bug123

A B C

bug123

master

HEAD

git commit (x2)

A B C

D E

bug123

master

HEAD

git checkout master

A B C

D E

bug123

master HEAD

git merge bug123

master

A B C D E

bug123

Fast-forward
Merge

HEAD

git branch -d bug123

master

A B C D E

HEAD

git checkout bug456

A B C D E

bug456

master

HEAD

git commit (x2)

A B C D E

F G

bug456

master

HEAD

git checkout master

A B C D E

F G

bug456

master HEAD

git merge bug456

master

A B C D E

F G

H

bug456

HEAD

git branch -d bug456

master

A B C D E

F G

H
Merge

Workflow

HEAD

A B C D E

F G

bug456

master

HEAD

git rebase master

A B C D E

F’ G’

bug456

master

HEAD

git checkout master / git merge bug456 / git branch -d bug456

A B C D E F’ G’

master Rebase
Workflow

HEAD

Merge preserves history, at the expense of extra commits

Rebase rewrites history, but makes sharing branches painful

Many tools will push you towards a merge workflow

You can use whatever suits you best

You may have heard rebase is scary…

…but isn’t that exactly what your centralized VCS does today?

Named repositories for sharing with
 Configure as many as you like using git remote

 By convention, origin is the name of the remote you cloned from

Use git fetch remote to get new changes w/out applying them

Use git pull remote to get and apply new changes

Use git push remote to send new changes

Both fetch and pull receive all changes for all remote branches

Pull only applies changes to the current branch
 Applies changes with merge workflow by default
 Add --rebase to use rebase workflow instead

Use git branch -a to see all branches, local and remote

Use git merge remotes/remote/branch to merge in changes
from the remote branch to your local branch

Use git checkout branch with a remote branch name to create
a local branch that tracks the remote (like master does by default)

Push sends changes from your local branch to the tracked remote
branch.

 If you’re out of date, you can’t push before you pull

 It is typical to use the same name for local and remote branches
which track each other (though not required)

Use git push --set-upstream remote when first pushing a
branch, to automatically set the tracking relationship

HEAD

master

bug456

A

B C D E

HEAD

master

bug456

A

B C D E

master

HEAD

master

bug456

A

B C D E

master

master

HEAD

master

bug456

A

B C D E

master

F G

HEADmaster

bug456

A

B C D E

master

git checkout master

HEADmaster

bug456

A

B C D E

master

git pull origin

F G

HEADmaster

bug456

A

B C D E

master

git merge bug 456

F G H

HEADmaster

bug456

A

B C D E

master

git push origin

F G H

HEADmaster

A

B C D E

master

git branch -d bug456

F G H

Remember, a remote branch is just a branch

The same merge vs. rebase strategies apply when merge between a
remote and local branch as when merging between local branches

Tracking relationships are local: your repository’s relationships are
local to you only, not shared

HEAD

master

bug456

A

B C D E

master

git checkout bug456

HEAD

master

bug456

A

B C D E

master

git push --set-upstream origin

bug456

HEAD

master

bug456

A

B C D E

master

git commit (x2)

F G

bug456

bug456

HEAD

master

bug456

A

B C D E

master

F G

H I

bug456

bug456

HEAD

master

bug456

A

B C D E

master

F G

H I

J

git pull origin

bug456

HEAD

master

bug456

A

B C D E

master

F G

H I

J

git push origin

bug456

HEADmaster

bug456

A

B C D E

master

F G

H I

J

git checkout master

bug456

HEADmaster

bug456

A B C D E

master

F G

H I

J

git merge bug456

bug456

HEADmaster

bug456

A B C D E

master

F G

H I

J

git push origin

bug456

HEADmaster

A B C D E

master

F G

H I

J

git branch -d bug456

HEADmaster

A B C D E

master

F G

H I

J

git push origin :bug456

 Short-lived local branches
 The merges from master are simpler that way

 Work on several things at once in several branches

 Create, commit, merge, push, delete

 Short-lived server branches
 Collaboration with co-workers

 Sharing code between multiple PCs

 Backing up in-progress code

 Long-lived server branches
 Use to work in parallel on multiple versions

 Same strategy as master: work in a local branch and integrate often

The longer people are out of the main branch, the more painful the
merges become – merge frequently

 Feature branches help prevent collisions, but delay integration

Version branches have more churn, with frequent integration benefits

Use tags when shipping; create branches only if you need to create an
out-of-band patch

Branches & tags are super cheap; don’t be afraid to use them freely

Branches on the server represent work in progress

 Set up your CI server to automatically build all branches

Push-button or automatic deployments from designated branches

What do you mean you aren’t pairing? 

Use server branches to share and contribute

 Some hosts offer code review facilities via pull requests

http://www.git-scm.com/
Git’s home on the internet

http://www.git-scm.com/book
Online book “Pro Git”

http://gitref.org/
Online reference for all git commands (don’t forget about “git help”!)

http://try.github.com/
Try git in your browser, with step-by-step instructions

http://gitready.com/
Tons of tips and tricks for Git users of all experience levels

http://www.git-scm.com/
http://www.git-scm.com/book
http://gitref.org/
http://try.github.com/
http://gitready.com/

http://code.google.com/p/msysgit
Git command line for Windows (includes git-bash)

http://code.google.com/p/tortoisegit
TortoiseGit (with TortoiseMerge)

http://github.com/dahlbyk/posh-git
Posh-Git (for PowerShell users)

http://www.jetbrains.com/teamcity
TeamCity Continuous Integration

http://code.google.com/p/msysgit
http://code.google.com/p/tortoisegit
http://github.com/dahlbyk/posh-git
http://www.jetbrains.com/teamcity

@bradwilson

http://bradwilson.typepad.com/

