LESSONS LEARNED IN
PROGRAMMER TESTING

PATTERNS AND IDIOMS

What Is Programmer Testing?

o Brian Marick

o http://www.testing.com Customer

Customer Exploratory

Support
anbnuod

“llities” —
Programmer non-
functional

Technology

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://www.testing.com/

Do you do programmer testing?

7 How many of you have been doing
programmer testing for 5 years or more?

o 4 years
o 3years
o 2 years
o 1 year

U s Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserve

Why do programmer testing?

“There is no such thing as done. Much more
iInvestment will be spent modifying programs
than developing them initially” [BecK]

“Programs are read more often than they are
written” [Beck]

"Readers need to understand programs in
detail and concept” [BecK

U s Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserve

Total Development Cost
S

Develop Extend/Maintain

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Extend/Maintain Cost [Beck]
N

| might break %
something i

5 ®

Write tests using the 3A patte

3A Pattern

Attributed to Bill Wake ()

Arrange — Setup the test harness
Act — Run the test
Assert — Check the results

Let’s look at an example!

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://xp123.com/

A Typical Test

[Fact]

public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert .False(stack.IsEmpty);

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

3A Pattern

[Fact]
public void TopDoesNotChangeTheStateOfTheStack()

| Ill
string element = stack.Top;

Assert.False(stack. IsEmpty);

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

3A Pattern

[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

Assert.False(stack. IsEmpty);

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

3A Pattern

[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

}

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

3A Summary

Benefits
Readability
Consistency
Liabilities
More Verbose
Might need to introduce local variables

Related Issues
One Assert per Test?

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Keep Your Tests Close

Benefits
Tests are equivalent to production code
Solves visibility problems

Liabilities
Should you ship your tests?

If No, how do you separate the tests from the
code when you release?

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Lesson #3

ExpectedException leads to uncertainty

ExpectedException Violates 3A

[Test]
[ExpectedException(typeof (InvalidOperationException))]
public void PopEmptyStack()

{

Stack<string> stack = new Stack<string>();

stack.Pop();
}

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Record the Exception instead
S

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Exception ex = Record.Exception(() => stack.Pop());

Assert.IsType<InvalidOperationException>(ex);

}

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Use Assert.Throws - .NET 2.0

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Assert .Throws<InvalidOperationExcept ion>(
delegate

{
stack.Pop();
1K

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Use Assert.Throws - .NET 3.5

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Assert .Throws<InvalidOperationExcept ion>(
() => stack.Pop());

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

More ExpectedException
Problems

[Test, ExpectedException(typeof(ArgumentException))]
public void DepositThrowsArgumentExceptionWhenZero()

{ CheckingAccount account = new CheckingAccount(0.00);
account .Deposit(0.00);

¥

public CheckingAccount (double balance)

i if (balance == 0) throw new ArgumentException("...");

public void Deposit(double amount)

{
}

if(amount == 0) throw new ArgumentException("...");

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Use Assert.Throws

[Fact |
public void DepositThrowsArgumentExceptionWhenZero()

{
CheckingAccount account = new CheckingAccount (150.00);

Assert . Throws<ArgumentExcept ion>(
() => account.Deposit(0));

}

public void Deposit(Decimal amount)

{
if(amount == 0) throw new ArgumentException("...");
// the rest of the implementation

}

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Improved Control Flow
B

[Fact |
public void PopEmptyStack()

{
Stack<string> stack = new Stack<string>();
Exception ex = Record.Exception(() => stack.Pop());

Assert.IsType<InvalidOperationException>(ex);
Assert.Equal("Stack empty.", ex.Message);

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Use Alternatives to ExpectedException

Benefits
Readability (these tests look like all the rest)

|dentify and isolate the code where you are
expecting the exception

Improved control flow
Liabilities
Act and Assert are together in Assert. Throws

Anonymous delegate syntax in .NET Framework
2.0 1s not great for readabillity

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Lesson #4

Small Fixtures

Small Fixtures

Benefits
Smaller more focused test classes
Class contains nested classes
Liablilities
Potential code duplication
Issues with test runners

Related Issues
Do you need SetUp and TearDown?

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Don't Use SetUp orTearDown

o
- Benefits
Readability
Test isolation
o Liabllities
Duplicated initialization code
- Related Issues
Small Fixtures

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

£-:@:@ EEEET
YV @ EEEE

@0 EFRER

Improve
Testability
with
Inversion
of Control

Inversion of Control (IoC)

Pattern
1

1 Article:

- Dependency Injection
Constructor Injection
Setter Injection

1 Let's look at an example from the article!

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://shrinkster.com/wkm

Before
S =

MovieLister

Movie FileBasedRespository

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

After

MovieLister

Movie

«interface»
_____________ IMovieRepository

AN

FileBasedRespository

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Improve Testability with 1oC

Benefits
Better test isolation
Decoupled class implementation
Liabilities
Decreases encapsulation
Interface explosion

Related Issues

Dependency injection frameworks are overkill for
most applications

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Summary

Just Do It!
_esson #1 — Write Tests using the 3A Pattern
_esson #2 — Keep your tests Close

_esson #3 — Use Alternatives to
ExpectedException

_esson #4 — Small Fixtures
_esson #5 — Don’t use SetUp or TearDown

_esson #6 — Improve Testability with
Dependency Injection

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Tools

S =
o xUnit.net — hiip://codeplex.com/xunit

o Nunit = hitp://nunit.org
o MbUnit — hitp://mbunit.com

o Visual Studio 2008 -
http://msdn2.microsoft.com/enus/vstudio/default.aspx

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://codeplex.com/xunit
http://nunit.org/
http://mbunit.com/
http://msdn2.microsoft.com/enus/vstudio/default.aspx

Blogs

o Brian Button
http://www.agileprogrammer.com/oneagdilecoder

o Brian Marick hitp: /v testing.com/col-bin/blog
o Peter Provost hilp://peterprovost.orng

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://www.agileprogrammer.com/oneagilecoder
http://www.testing.com/cgi-bin/blog
http://www.testing.com/cgi-bin/blog
http://www.testing.com/cgi-bin/blog
http://peterprovost.org/

Books

[Beck] Implementation Patterns by Kent Beck,
Addison-Wesley, 2008

xUnit Test Patterns by Gerard Meszaros,
Addison-Wesley, 2007

Refactoring to Patterns by Joshua Kerievsky,
Addison-Wesley, 2005

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Contact Information

S
- James Newkirk
o Email: jamesnew@microsoft.com
o Blog: http://jJamesnewkKirk.typepad.com
o Brad Wilson
o Email: bradwils@microsoft.com
o Blog: http://bradwilson.typepad.com
o Twitter: http://twitter.com/bradwilson

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

mailto:jamesnew@microsoft.com
http://jamesnewkirk.typepad.com/
mailto:bradwils@microsoft.com
http://bradwilson.typepad.com/
http://twitter.com/bradwilson

Questions
-1

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

