
LESSONS LEARNED IN

PROGRAMMER TESTING
PATTERNS AND IDIOMS

James Newkirk and Brad Wilson

What is Programmer Testing?

 Brian Marick
 http://www.testing.com

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Customer

Technology

S
u
p
p
o
rt C

ritiq
u
e

http://www.testing.com/

Do you do programmer testing?

 How many of you have been doing

programmer testing for 5 years or more?

 4 years

 3 years

 2 years

 1 year

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Why do programmer testing?

 “There is no such thing as done. Much more

investment will be spent modifying programs

than developing them initially” [Beck]

 “Programs are read more often than they are

written” [Beck]

 “Readers need to understand programs in

detail and concept” [Beck]

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Total Development Cost

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Extend/MaintainDevelop

Understand

Deploy

Test

Change

Extend/Maintain Cost [Beck]

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

I might break

something

Where do I start?

Just Do It!

Write tests using the 3A pattern

Lesson #1

3A Pattern

 Attributed to Bill Wake (http://xp123.com)

 Arrange – Setup the test harness

 Act – Run the test

 Assert – Check the results

 Let’s look at an example!

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://xp123.com/

[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

A Typical Test

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert

[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

3A Pattern

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert

Arrange

[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

3A Pattern

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert

Act

[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

3A Pattern

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert

Assert

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

3A Summary

 Benefits

Readability

Consistency

 Liabilities

More Verbose

Might need to introduce local variables

 Related Issues

One Assert per Test?

Keep Your

Tests Close

Lesson

#2

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Keep Your Tests Close

 Benefits

 Tests are equivalent to production code

 Solves visibility problems

 Liabilities

 Should you ship your tests?

 If No, how do you separate the tests from the

code when you release?

ExpectedException leads to uncertainty

Lesson #3

ExpectedException Violates 3A

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Test]
[ExpectedException(typeof(InvalidOperationException))]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

stack.Pop();
}

Record the Exception instead

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Exception ex = Record.Exception(() => stack.Pop());

Assert.IsType<InvalidOperationException>(ex);
}

Use Assert.Throws - .NET 2.0

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Assert.Throws<InvalidOperationException>(
delegate
{

stack.Pop();
});

}

Use Assert.Throws - .NET 3.5

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Assert.Throws<InvalidOperationException>(
() => stack.Pop());

}

More ExpectedException

Problems

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

public CheckingAccount(double balance)
{

if (balance == 0) throw new ArgumentException("...");
}

public void Deposit(double amount)
{

if(amount == 0) throw new ArgumentException("...");
}

[Test, ExpectedException(typeof(ArgumentException))]
public void DepositThrowsArgumentExceptionWhenZero()
{

CheckingAccount account = new CheckingAccount(0.00);

account.Deposit(0.00);
}

Use Assert.Throws

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

public void Deposit(Decimal amount)
{

if(amount == 0) throw new ArgumentException("...");

// the rest of the implementation
}

[Fact]
public void DepositThrowsArgumentExceptionWhenZero()
{

CheckingAccount account = new CheckingAccount(150.00);

Assert.Throws<ArgumentException>(
() => account.Deposit(0));

}

Improved Control Flow

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Exception ex = Record.Exception(() => stack.Pop());

Assert.IsType<InvalidOperationException>(ex);
Assert.Equal("Stack empty.", ex.Message);

}

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Use Alternatives to ExpectedException

 Benefits

Readability (these tests look like all the rest)

 Identify and isolate the code where you are

expecting the exception

 Improved control flow

 Liabilities

 Act and Assert are together in Assert.Throws

 Anonymous delegate syntax in .NET Framework

2.0 is not great for readability

Small Fixtures

Lesson #4

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Small Fixtures

 Benefits

 Smaller more focused test classes

Class contains nested classes

 Liabilities

 Potential code duplication

 Issues with test runners

 Related Issues

Do you need SetUp and TearDown?

Don’t Use

SetUp or TearDown
Lesson #5

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Don’t Use SetUp orTearDown

 Benefits

Readability

 Test isolation

 Liabilities

Duplicated initialization code

 Related Issues

 Small Fixtures

Improve
Testability

with
Inversion

of Control

Lesson

#6

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Inversion of Control (IoC)

Pattern

 Article: http://shrinkster.com/wkm

 Dependency Injection

Constructor Injection

 Setter Injection

 Let’s look at an example from the article!

http://shrinkster.com/wkm

Before

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Movie FileBasedRespository

MovieLister

After

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Movie

FileBasedRespository

MovieLister

«interface»

IMovieRepository

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Improve Testability with IoC

 Benefits

 Better test isolation

Decoupled class implementation

 Liabilities

Decreases encapsulation

 Interface explosion

 Related Issues

Dependency injection frameworks are overkill for

most applications

Summary

 Just Do It!

 Lesson #1 – Write Tests using the 3A Pattern

 Lesson #2 – Keep your tests Close

 Lesson #3 – Use Alternatives to

ExpectedException

 Lesson #4 – Small Fixtures

 Lesson #5 – Don’t use SetUp or TearDown

 Lesson #6 – Improve Testability with

Dependency Injection
Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Tools

 xUnit.net – http://codeplex.com/xunit

 Nunit – http://nunit.org

 MbUnit – http://mbunit.com

 Visual Studio 2008 -

http://msdn2.microsoft.com/enus/vstudio/default.aspx

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://codeplex.com/xunit
http://nunit.org/
http://mbunit.com/
http://msdn2.microsoft.com/enus/vstudio/default.aspx

Blogs

 Brian Button

http://www.agileprogrammer.com/oneagilecoder

 Brian Marick http://www.testing.com/cgi-bin/blog

 Peter Provost http://peterprovost.org

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://www.agileprogrammer.com/oneagilecoder
http://www.testing.com/cgi-bin/blog
http://www.testing.com/cgi-bin/blog
http://www.testing.com/cgi-bin/blog
http://peterprovost.org/

Books

 [Beck] Implementation Patterns by Kent Beck,

Addison-Wesley, 2008

 xUnit Test Patterns by Gerard Meszaros,

Addison-Wesley, 2007

 Refactoring to Patterns by Joshua Kerievsky,

Addison-Wesley, 2005

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Contact Information

 James Newkirk

 Email: jamesnew@microsoft.com

 Blog: http://jamesnewkirk.typepad.com

 Brad Wilson

 Email: bradwils@microsoft.com

 Blog: http://bradwilson.typepad.com

 Twitter: http://twitter.com/bradwilson

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

mailto:jamesnew@microsoft.com
http://jamesnewkirk.typepad.com/
mailto:bradwils@microsoft.com
http://bradwilson.typepad.com/
http://twitter.com/bradwilson

Questions

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

