
Brad Wilson Principal Software Developer Tier 3

No single point of failure

Developers can be productive while offline

Offline operations are extremely fast... almost everything is offline

No infrastructure required for skunk-works projects

Admin in whatever model suits you best:
benevolent dictator, Lieutenant, or multiple committers

Branching “just works”

Created by Linus Torvalds (~9 months)
Maintained by Junio Hamano

 Source control for Linux since v2.6 in April, 2005

Open source (http://github.com/git/git)

TFS Online, GitHub, CodePlex, Bitbucket,
and countless startups and enterprises

“Nothing else was good enough or fast enough.”

http://github.com/git/git

Easy and fast branching and merging

 Snapshots of your working folder, not diffs

Extremely fast with large repositories

Cryptographic tamper-proofing of history

Automatic support for renames

…it won in open source

c6afc95…

Author

Brad <email>

Committer

Brad <email>

Message

First Commit

Files

0ceb234…

Author

Jim

Committer

Jim

Message

Fixed typo

Files

9a7a35d…

Author

Scott

Committer

Matthew

Message

New feature

Files

git add puts copies of files (stages) into the “index”
 If you make further modifications to a file, you must re-stage it

git commit converts the index into a commit
 git commit -a does both ‘add’ (for mods/deletes) and ‘commit’

 Still need to use git add for new files

git status shows you what’s staged and unstaged

Use built-in diff to show you differences in files
 git diff shows you what you could stage

 git diff --staged shows you would you could commit

On branch master

Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

deleted: deleted.txt

modified: foo.txt

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

new-file.txt

no changes added to commit (use "git add" and/or "git commit -a")

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: deleted.txt

modified: foo.txt

new file: new-file.txt

diff --git a/foo.txt b/foo.txt
index 3c619de..65d9d4f 100644
--- a/foo.txt
+++ b/foo.txt
@@ -1,4 +1,4 @@
This is a new file.

+Inserted a line here
And a new edit.

-This line I'm planning to delete later.
Fixed!

Your working folder contains a copy of source code

The point in the repository you’re working from is called HEAD

You will typically have HEAD pointing at a branch (f.e., master)

Use git checkout to change what HEAD is pointing to
 Your working folder updates when you check out

 You may not be able to check out if you have conflicting pending changes

A branch in Git is a “sticky note” pointing at a commit

git checkout hash points HEAD at a commit
git checkout branch points HEAD at a branch

When you commit, HEAD always moves forward…
…and if HEAD is pointing at a branch, the sticky note moves, too

Creating a new branch is just making a new sticky point, pointed (by
default) to wherever HEAD is point to

Tags are sticky notes that don’t automatically move

1.0 master

c6afc95…

Author

Brad <email>

Committer

Brad <email>

Message

First Commit

0ceb234…

Author

Jim

Committer

Jim

Message

Fixed typo

FilesFiles

9a7a35d…

Author

Scott

Committer

Matthew

Message

New feature

Files

git commit –m "My first commit"

master

A

HEAD

git commit (x2)

master

A B C

HEAD

git branch bug123

A B C

bug123

master HEAD

git checkout bug123

A B C

bug123

master

HEAD

git commit (x2)

A B C

D E

bug123

master

HEAD

git checkout master

A B C

D E

bug123

master HEAD

git merge bug123

master

A B C D E

bug123

Fast-forward
Merge

HEAD

git branch -d bug123

master

A B C D E

HEAD

git checkout bug456

A B C D E

bug456

master

HEAD

git commit (x2)

A B C D E

F G

bug456

master

HEAD

git checkout master

A B C D E

F G

bug456

master HEAD

git merge bug456

master

A B C D E

F G

H

bug456

HEAD

git branch -d bug456

master

A B C D E

F G

H
Merge

Workflow

HEAD

A B C D E

F G

bug456

master

HEAD

git rebase master

A B C D E

F’ G’

bug456

master

HEAD

git checkout master / git merge bug456 / git branch -d bug456

A B C D E F’ G’

master Rebase
Workflow

HEAD

Merge preserves history, at the expense of extra commits

Rebase rewrites history, but makes sharing branches painful

Many tools will push you towards a merge workflow

You can use whatever suits you best

You may have heard rebase is scary…

…but isn’t that exactly what your centralized VCS does today?

Named repositories for sharing with
 Configure as many as you like using git remote

 By convention, origin is the name of the remote you cloned from

Use git fetch remote to get new changes w/out applying them

Use git pull remote to get and apply new changes

Use git push remote to send new changes

Both fetch and pull receive all changes for all remote branches

Pull only applies changes to the current branch
 Applies changes with merge workflow by default
 Add --rebase to use rebase workflow instead

Use git branch -a to see all branches, local and remote

Use git merge remotes/remote/branch to merge in changes
from the remote branch to your local branch

Use git checkout branch with a remote branch name to create
a local branch that tracks the remote (like master does by default)

Push sends changes from your local branch to the tracked remote
branch.

 If you’re out of date, you can’t push before you pull

 It is typical to use the same name for local and remote branches
which track each other (though not required)

Use git push --set-upstream remote when first pushing a
branch, to automatically set the tracking relationship

HEAD

master

bug456

A

B C D E

HEAD

master

bug456

A

B C D E

master

HEAD

master

bug456

A

B C D E

master

master

HEAD

master

bug456

A

B C D E

master

F G

HEADmaster

bug456

A

B C D E

master

git checkout master

HEADmaster

bug456

A

B C D E

master

git pull origin

F G

HEADmaster

bug456

A

B C D E

master

git merge bug 456

F G H

HEADmaster

bug456

A

B C D E

master

git push origin

F G H

HEADmaster

A

B C D E

master

git branch -d bug456

F G H

Remember, a remote branch is just a branch

The same merge vs. rebase strategies apply when merge between a
remote and local branch as when merging between local branches

Tracking relationships are local: your repository’s relationships are
local to you only, not shared

HEAD

master

bug456

A

B C D E

master

git checkout bug456

HEAD

master

bug456

A

B C D E

master

git push --set-upstream origin

bug456

HEAD

master

bug456

A

B C D E

master

git commit (x2)

F G

bug456

bug456

HEAD

master

bug456

A

B C D E

master

F G

H I

bug456

bug456

HEAD

master

bug456

A

B C D E

master

F G

H I

J

git pull origin

bug456

HEAD

master

bug456

A

B C D E

master

F G

H I

J

git push origin

bug456

HEADmaster

bug456

A

B C D E

master

F G

H I

J

git checkout master

bug456

HEADmaster

bug456

A B C D E

master

F G

H I

J

git merge bug456

bug456

HEADmaster

bug456

A B C D E

master

F G

H I

J

git push origin

bug456

HEADmaster

A B C D E

master

F G

H I

J

git branch -d bug456

HEADmaster

A B C D E

master

F G

H I

J

git push origin :bug456

 Short-lived local branches
 The merges from master are simpler that way

 Work on several things at once in several branches

 Create, commit, merge, push, delete

 Short-lived server branches
 Collaboration with co-workers

 Sharing code between multiple PCs

 Backing up in-progress code

 Long-lived server branches
 Use to work in parallel on multiple versions

 Same strategy as master: work in a local branch and integrate often

The longer people are out of the main branch, the more painful the
merges become – merge frequently

 Feature branches help prevent collisions, but delay integration

Version branches have more churn, with frequent integration benefits

Use tags when shipping; create branches only if you need to create an
out-of-band patch

Branches & tags are super cheap; don’t be afraid to use them freely

Branches on the server represent work in progress

 Set up your CI server to automatically build all branches

Push-button or automatic deployments from designated branches

What do you mean you aren’t pairing?

Use server branches to share and contribute

 Some hosts offer code review facilities via pull requests

http://www.git-scm.com/
Git’s home on the internet

http://www.git-scm.com/book
Online book “Pro Git”

http://gitref.org/
Online reference for all git commands (don’t forget about “git help”!)

http://try.github.com/
Try git in your browser, with step-by-step instructions

http://gitready.com/
Tons of tips and tricks for Git users of all experience levels

http://www.git-scm.com/
http://www.git-scm.com/book
http://gitref.org/
http://try.github.com/
http://gitready.com/

http://code.google.com/p/msysgit
Git command line for Windows (includes git-bash)

http://code.google.com/p/tortoisegit
TortoiseGit (with TortoiseMerge)

http://github.com/dahlbyk/posh-git
Posh-Git (for PowerShell users)

http://www.jetbrains.com/teamcity
TeamCity Continuous Integration

http://code.google.com/p/msysgit
http://code.google.com/p/tortoisegit
http://github.com/dahlbyk/posh-git
http://www.jetbrains.com/teamcity

@bradwilson

http://bradwilson.typepad.com/

