
Effective Unit Testing

Brad Wilson

Scott Densmore



Agenda

• What is Unit Testing?

• Typical Unit Testing Problems

• Best Practices for Effective Unit Testing



What is Unit Testing?



A Definition

• Unit Testing is code 
that…

– Is written by developers, 
for developers.

– Exercises a small, 
specific area of 
functionality.

– Helps “prove” that a 
piece of code does what 
the developer expects it 
to do.



What Unit Testing Is Not

• Acceptance Testing (aka Functional Testing)

• Performance Testing

• Scalability Testing



Marick’s Four Quadrants of Testing

Customer

Tests

Programmer 

Tests

Exploratory 

Tests

Scalability

Performance

Usability

Security

Business Facing

Technology Facing

S
u

p
p

o
rt

 D
e

v
e

lo
p

m
e

n
t

C
ritiq

u
e

 R
e

s
u

lt

Source: Brian Marick – http://testing.com/ 



Why Unit Test

• It will make your life 
easier

• Better code

• Better designs

• Code is easier to 
maintain later

• Confidence when you 
code



Common Excuses

• I’m not a tester!

• It takes too much time.

• It takes too long to run 
the tests.

• I don’t know how to test 
it.

• I don’t really know what it 
is supposed to do, so I 
can’t test it.

• But it compiles! It doesn’t 
need tests.



Typical Unit Testing Problems



Testing Is Monotonous and Boring

• Often indicates bad tooling or bad techniques

• Unit testing should…

– Be easy to do

– Provide rapid feedback



Poor Test Coverage

• Often happens when tests not written first

• Hard to retrofit later

• Test coverage is orthogonal to test quality



Purpose of Tests is Misunderstood

• Remember why we do unit testing

• Easy to get distracted by irrelevant things

• What is the scope of the test?



Informal Testing Process

• How does your team do unit testing?

– Test-first?

– Intuitive “poking and prodding” style testing?

– Smoke testing?

– Whatever the developer wants?



Inconsistent Testing

• Are tests required before check in?

• How is it enforced?



Low Test Quality

• Single biggest problem in unit testing today

• Testing requires a special mindset

• Tools only solve half the problem



Code Not Designed for Test

• Often the cause of low test quality

• Hard to design testable code

• However, testable code often is better 
designed



Tests Not Maintained

• So you’ve shipped your code and someone 
finds a bug…

• Do you fix the tests? Or just fix the bug?

• What about the rest of the team?



Best Practices for
Effective Unit Testing



Automate Your Tests

• If it is hard to run tests, you won’t do it

• Manual (aka scripted) tests make regression 
testing very hard



Use Good Tools

• The tools should make it…

– Easy to write tests

– Easy to organize your tests

– Easy to run tests (all, some, one)

• They should provide…

– Quick feedback of pass/fail

– Details on the fail conditions



Use Good Tools

Testing Focused Tools

• NUnit and/or MSTest

• Test Driven .NET

• NMock

Supporting Tools

• MSBuild

• Resharper

• CodeRush

• CodeSmith



Get a Mentor

• Testing is as much an art as a science

• Learning to write good tests is hard

• Some people are naturally good at it and 
some aren’t



Use a Test List

• Start your development activities by writing 
down a list of things you want to test

• You will often think of a test while writing 
another one. When you do, add it to the list.

• Review your list frequently



Write Tests First

• Test-driven development (TDD) is a proven way of 
improving quality*

• TDD’s main objective is not testing software! (this 
is a side effect)

• TDD’s main objective is to aid programmers and 
customers during the development process with 
unambiguous requirements. 

• Code is written with testing as a primary 
motivation. In short, the code is testable.

* http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf



What to Test

• The “did we get what we expected” test isn’t 
always good enough

• Ask yourself the question…

– “If the code ran correctly, how would I know?”



What to Test - Testing Heuristics

• Test at the boundaries

• Test every error message

• Test different configurations

• Run tests that are annoying to setup

• Avoid redundant tests

– Source: Lessons Learned in Software Testing,
Cem Kaner, James Bach, Brett Pettichord



What to Test – BICEP

B Are the boundary conditions correct?

I Can you check inverse relationships?

C Can you cross check using other means?

E Can you force an error condition to happen?

P Are the performance characteristics acceptable?

Source:
Pragmatic Unit Testing in C# with NUnit, Andy Hunt and Dave Thomas



Test Structure

• William Wake’s 3-A Pattern

– Arrange

– Act

– Assert



Designing for Test

• One simple question to help you write good 
code…

“How am I going to test this?”

• If you don’t know the answer, then you 
probably need to reconsider your design.



What is a Mock Object?

“A mock object is an object created to stand in 
for an object that your code will be collaborating 
with. Your code can call methods on the mock 
object, which will deliver results as set up by 
your tests.” 

Source: JUnit in Action, Vincent Massol



When are mocks appropriate? 

• Real object has non-
deterministic behavior

• Real object is difficult to 
set up 

• Real object has behavior 
that is difficult to cause

• Real object is slow

Source:

http://c2.com/cgi/wiki?MockObjects



Mock Downsides

• Code complexity of being able to switch 
between real and mock implementations

• Maintaining the mock



Properties of Good Tests

• Automatic Tests need to be run checked
automatically

• Thorough Test everything that could possibly
break

• Repeatable Tests should produce the same results
each time they are run

• Independent A test should exercise only one thing
at a time

• Professional Tests are code too! Write them
professionally.

Source: Pragmatic Unit Testing in C# with NUnit



Recommended Test Organization

• Tests in a separate project/assembly
• Naming conventions

If you are testing the class:
Foo.Bar.Baz

Then you should name your tests
Foo.Bar.Tests.BazTests

or
Foo.Bar.Tests.BazFixture

• Note the namespace and test class name!



Naming Your Tests

• The test’s name should describe the desired 
outcome and not just be the name of the 
method under test

Good name: PopReturnsLastPushedItem

Bad name: PopTest



When to Run Tests

• When you write a new method…
… compile and run local unit tests

• When you fix a bug…
… run the test that illustrates that bug.

• Any successful compile…
… run local unit tests.

• Before you check in…
… run all tests.

• Continuously…
... check out and build the project from scratch including all 

unit tests.



Do not check in code that…

• Is incomplete (e.g. 
missing dependencies)

• Doesn’t compile

• Compiles but breaks 
other code

• Doesn’t have unit tests

• Has failing unit tests

• Passes its tests but causes 
other tests to fail.

• Has tests with the 
[Ignore] attribute



Additional Resources



Web Sites

• http://www.testdriven.com

• http://www.xprogramming.com

• http://workspaces.gotdotnet.com/tdd

http://www.testdriven.com/
http://www.xprogramming.com/
http://workspaces.gotdotnet.com/tdd


Books

• The Pragmatic Programmer
Andy Hunt and Dave Thomas

• Test-Driven Development in Microsoft .NET
Jim Newkirk and Alexei Vorontsov

• Test-Driven Development, by Example
Kent Beck

• Pragmatic Unit Testing in C# with NUnit
Andy Hunt and Dave Thomas

• Working Effectively With Legacy Code
Michael Feathers

• Refactoring
Martin Fowler

• Lessons Learned in Software Testing
Cem Kaner, James Bach, and Brett Pettichord


