
LESSONS LEARNED IN 

PROGRAMMER TESTING
PATTERNS AND IDIOMS

James Newkirk and Brad Wilson



What is Programmer Testing?

 Brian Marick
 http://www.testing.com

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Customer

Technology

S
u
p
p
o
rt C

ritiq
u
e

http://www.testing.com/


Do you do programmer testing? 

 How many of you have been doing 

programmer testing for 5 years or more? 

 4 years

 3 years

 2 years

 1 year

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved



Why do programmer testing? 

 “There is no such thing as done. Much more 

investment will be spent modifying programs 

than developing them initially” [Beck]

 “Programs are read more often than they are 

written” [Beck]

 “Readers need to understand programs in 

detail and concept” [Beck]

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved



Total Development Cost

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Extend/MaintainDevelop



Understand

Deploy

Test

Change

Extend/Maintain Cost [Beck]

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved



I might break 

something



Where do I start? 



Just Do It!



Write tests using the 3A pattern

Lesson #1



3A Pattern

 Attributed to Bill Wake (http://xp123.com)  

 Arrange – Setup the test harness

 Act – Run the test

 Assert – Check the results

 Let’s look at an example!

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://xp123.com/


[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

A Typical Test

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert



[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

3A Pattern

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert

Arrange



[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

3A Pattern

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert

Act



[Fact]
public void TopDoesNotChangeTheStateOfTheStack()
{

Stack<string> stack = new Stack<string>();
stack.Push("42");

string element = stack.Top;

Assert.False(stack.IsEmpty);
}

3A Pattern

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Assert

Assert



Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

3A Summary

 Benefits

Readability

Consistency

 Liabilities

More Verbose

Might need to introduce local variables

 Related Issues

One Assert per Test?



Keep Your

Tests Close

Lesson 

#2



Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Keep Your Tests Close

 Benefits

 Tests are equivalent to production code

 Solves visibility problems

 Liabilities

 Should you ship your tests? 

 If No, how do you separate the tests from the 

code when you release? 



ExpectedException leads to uncertainty

Lesson #3



ExpectedException Violates 3A

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Test]
[ExpectedException(typeof(InvalidOperationException))]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

stack.Pop();
}



Record the Exception instead

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Exception ex = Record.Exception(() => stack.Pop());

Assert.IsType<InvalidOperationException>(ex);
}



Use Assert.Throws - .NET 2.0

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Assert.Throws<InvalidOperationException>(
delegate
{

stack.Pop();
});

}



Use Assert.Throws - .NET 3.5

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Assert.Throws<InvalidOperationException>(
() => stack.Pop());

}



More ExpectedException

Problems

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

public CheckingAccount(double balance)
{

if (balance == 0) throw new ArgumentException("...");
}

public void Deposit(double amount)
{

if(amount == 0) throw new ArgumentException("...");
}

[Test, ExpectedException(typeof(ArgumentException))]
public void DepositThrowsArgumentExceptionWhenZero()
{

CheckingAccount account = new CheckingAccount(0.00);

account.Deposit(0.00);
}



Use Assert.Throws

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

public void Deposit(Decimal amount)
{

if(amount == 0) throw new ArgumentException("...");

// the rest of the implementation
}

[Fact]
public void DepositThrowsArgumentExceptionWhenZero()
{

CheckingAccount account = new CheckingAccount(150.00);

Assert.Throws<ArgumentException>( 
() => account.Deposit(0));

}



Improved Control Flow

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

[Fact]
public void PopEmptyStack()
{

Stack<string> stack = new Stack<string>();

Exception ex = Record.Exception(() => stack.Pop());

Assert.IsType<InvalidOperationException>(ex);
Assert.Equal("Stack empty.", ex.Message);

}



Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Use Alternatives to ExpectedException

 Benefits

Readability (these tests look like all the rest)

 Identify and isolate the code where you are 

expecting the exception

 Improved control flow

 Liabilities

 Act and Assert are together in Assert.Throws

 Anonymous delegate syntax in .NET Framework 

2.0 is not great for readability



Small Fixtures

Lesson #4



Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Small Fixtures

 Benefits

 Smaller more focused test classes

Class contains nested classes

 Liabilities

 Potential code duplication

 Issues with test runners

 Related Issues

Do you need SetUp and TearDown? 



Don’t Use

SetUp or TearDown
Lesson #5



Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Don’t Use SetUp orTearDown

 Benefits

Readability

 Test isolation

 Liabilities

Duplicated initialization code

 Related Issues

 Small Fixtures



Improve
Testability

with
Inversion

of Control

Lesson

#6



Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Inversion of Control (IoC) 

Pattern

 Article:  http://shrinkster.com/wkm

 Dependency Injection

Constructor Injection

 Setter Injection

 Let’s look at an example from the article!

http://shrinkster.com/wkm


Before

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Movie FileBasedRespository

MovieLister



After

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Movie

FileBasedRespository

MovieLister

«interface»

IMovieRepository



Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

Improve Testability with IoC

 Benefits

 Better test isolation

Decoupled class implementation

 Liabilities

Decreases encapsulation

 Interface explosion

 Related Issues

Dependency injection frameworks are overkill for 

most applications



Summary

 Just Do It!

 Lesson #1 – Write Tests using the 3A Pattern

 Lesson #2 – Keep your tests Close

 Lesson #3 – Use Alternatives to 

ExpectedException

 Lesson #4 – Small Fixtures

 Lesson #5 – Don’t use SetUp or TearDown

 Lesson #6 – Improve Testability with 

Dependency Injection
Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved



Tools

 xUnit.net – http://codeplex.com/xunit

 Nunit – http://nunit.org

 MbUnit – http://mbunit.com

 Visual Studio 2008 -

http://msdn2.microsoft.com/enus/vstudio/default.aspx

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://codeplex.com/xunit
http://nunit.org/
http://mbunit.com/
http://msdn2.microsoft.com/enus/vstudio/default.aspx


Blogs

 Brian Button  

http://www.agileprogrammer.com/oneagilecoder

 Brian Marick http://www.testing.com/cgi-bin/blog

 Peter Provost http://peterprovost.org

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

http://www.agileprogrammer.com/oneagilecoder
http://www.testing.com/cgi-bin/blog
http://www.testing.com/cgi-bin/blog
http://www.testing.com/cgi-bin/blog
http://peterprovost.org/


Books

 [Beck] Implementation Patterns by Kent Beck, 

Addison-Wesley, 2008

 xUnit Test Patterns by Gerard Meszaros, 

Addison-Wesley, 2007

 Refactoring to Patterns by Joshua Kerievsky, 

Addison-Wesley, 2005

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved



Contact Information

 James Newkirk

 Email: jamesnew@microsoft.com

 Blog: http://jamesnewkirk.typepad.com

 Brad Wilson

 Email: bradwils@microsoft.com

 Blog: http://bradwilson.typepad.com

 Twitter: http://twitter.com/bradwilson

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved

mailto:jamesnew@microsoft.com
http://jamesnewkirk.typepad.com/
mailto:bradwils@microsoft.com
http://bradwilson.typepad.com/
http://twitter.com/bradwilson


Questions

Unless Noted Otherwise Copyright © 2008 James Newkirk. All Rights Reserved


