
xUnit.net v2:
Design and Extensibility

James Newkirk, Brad Wilson

https://github.com/xunit

@jamesnewkirk @bradwilson @xunit

Why Build xUnit.net?

• Flexibility: static and private methods

• Reduce Friction: fewer attributes

• Safety: create a new instance for every test

• Be explicit: no control flow in attributes

• Runners: be everywhere the developer is

• Consistency: Prefer the language & framework

• Extensibility: not an afterthought

• TDD first: built with and for TDD

Unexpected Popularity

• We built what we wanted, not what we thought
our “customers” would want

• Internal adoption at Microsoft (Roslyn, ASP.NET,
Entity Framework, CodePlex, etc.)

• Lots of people built their own “test frameworks” to
leverage us (and our runners)

• Half a million downloads (plus whatever the other
frameworks have)

Why Build v2?
How stupid is it to start over when you’re popular?
Haven’t you heard of “second system syndrome”?

(Spoiler: We can be pretty stupid when we try.)

Evolution of the .NET Framework

• No lambdas

• No LINQ

• Worst. Async. Programming. Model. Ever.

4.5 is a no-brainer. Time to be cutting edge again!

Parallelization

• Growing test suite sizes
• 10K (or 100K) tests is a lot of aggregate time

• Most developers have 4-8x as many cores today

• Like randomization, helps find subtle test bugs

• Opportunities:
• Parallelize tests against each other

• Parallelize test assemblies against each other

Test Collections

• Something between “test class” and “assembly”

• Group tests together to share long-lived fixtures

• Become the parallelization boundary

• By default, each class is a collection
• Add [Collection] to test classes

• Optional collection class, decorated with [TestCollection]

Code Rot

• Years of execution pipeline tweaks

• We hit the wall for improvement without breaking
version-independent runner support

• Extensibility points were valuable but limited

• 3rd party runners stressed the framework

• Hacked support for things like async

Community Feedback

• Move [Theory] into the main line

• Make Assert easy to remove, replace, extend

• Support for PCL test libraries

• Support for device runners (Windows 8, Windows
Phone 8, iPhone, Android)

• Support for 3rd party runners without hacks
(Resharper, Code Rush, NCrunch)

v2 Extensibility
Half a decade of developer requests

Extensibility: Assert

• Lots of options
• Use our Assert class as-is, binary reference

• Bring in our Assert class as extensible source code

• Bring in 3rd party assertions (like Shouldly)

• Create your own 3rd party assertions, using ours

Sample: AssertExtensions

Extensibility: Before/After

• Run code before & after each test runs

• Intended for cross-cutting concerns
• Access to the method, but not the test class instance

• Customize:
• Derive from BeforeAfterTestAttribute

• Applies to: Test class, Test method

Samples: AssumeIdentity, UseCulture

Extensibility: Class Fixtures

• Run code before & after all tests in test class

• Customize:
• Write a class (before = ctor, after = IDisposable.Dispose)

• Decorate class with IClassFixture<T>

• Optionally accept fixture via constructor injection

• Applies to: Test collection, Test class

Sample: ClassFixtureExample

Extensibility: Collection Fixtures

• Run code before & after all tests in test collection

• Customize:
• Write a class (before = ctor, after = IDisposable.Dispose)

• Decorate class with ICollectionFixture<T>

• Optionally accept fixture via constructor injection

• Applies to: Test collection

Sample: CollectionFixtureExample

Extensibility: Theory Data

• Customize:
• Derive from DataAttribute

• Default discoverer behavior calls the attribute to get the
data (no rich discovery for source-based runners like R#)

• Optional class which implements ITheoryDataDiscoverer
• Decorate custom attribute with [DataDiscoverer]

• Applies to: Test method

Sample: ExcelDataExample

Extensibility: Collections / Parallel

• Built in behaviors:
• Collection per test class (default) or assembly

• Parallelization (on by default)

• Maximum threads (cores x 4 by default)

• Customize:
• Add [CollectionBehavior]

• Class that implements IXunitTestCollectionFactory
• Constructor takes ITestAssembly

• Applies to: Assembly

Extensibility: Test Ordering

• Default order is random (but repeatable)

• Customize:
• Class that implements ITestCaseOrderer

• Apply with [TestCaseOrderer]

• Applies to: Assembly, Test collection, Test class

Sample: TestOrderExamples

Extensibility: Traits

• Default traits are done with [Trait]

• Customize:
• Custom attribute that implements ITraitAttribute

• Class that implements ITraitDiscoverer

• Add [TraitDiscoverer] to the custom attribute

• Applies to: Test class, Test method

Sample: TraitExtensibility

Extensibility: FactAttribute

• “What does it mean to be a test?”

• Customize:
• Derive from FactAttribute

• Class that implements IXunitTestCaseDiscoverer

• Decorate attribute with [XunitTestCaseDiscoverer]

• Applies to: Test method

Sample: The source for TheoryAttribute 

Extensibility: Test frameworks

• “What does it mean to find and run tests?”

• Customize:
• Implement ITestFramework

• Implement ITestFrameworkDiscoverer

• Implement ITestFrameworkExecutor

• Apply [TestFramework] attribute

• Applies to: Assembly

Sample: SpecificationExamples

Extensibility: Runners

• Version independent runner libraries
• xunit.runner.utility.net35 (supports v1 and v2)

• xunit.runner.utility.platform (support v2 only)
• Windows 8 (only runs in Visual Studio)

• Windows Phone 8 (only runs in Visual Studio)

• iOS (via Xamarin)

• Android (via Xamarin)

Sample: Source to the MSBuild runner 

Contribution

• OuterCurve Foundation project

• Project hosted on GitHub

• There are lots of ways to help:
• Spread the word

• Report bugs & feature requests

• Enhance samples & documentation

• Pull requests

GitHub

• Core framework and runners:
https://github.com/xunit/xunit

• Samples:
https://github.com/xunit/samples

• Android/iOS runners:
https://github.com/xunit/xamarin.xunit

• Resharper runner:
https://github.com/xunit/resharper-xunit

Thank You
We’re hiring!

http://centurylinkcloud.com/careers

Slides:
http://bit.ly/BradsTalks

